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Community structure identification
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Abstract

We review and compare recent approaches to community structure
identification. Definitions of communities are revisited, as well as the
recently proposed modularity measure. We then classify the various
methods into link removal methods, agglomerative methods, methods
based on optimising the modularity measure, spectral methods and
others. Finally, the performance of the methods, as applied to ad-hoc
networks with known community structre, is compared. The work is
intended as an overview and introduction into community structure
identification in complex networks.

1 Introduction

The study of complex networks has received an enormous amount of atten-
tion from the scientific community in recent years [IL 2, B, @, 5 6]. Physicists
in particular have become interested in the study of networks describing the
topologies of wide variety of systems, such as the world wide web, social
and communication networks, biochemical networks and many more. Al-
though several questions have been addressed, many important ones still
resist complete resolution. One such problem is the analysis of modular
structure found in many networks []. Distinct modules or communities
within networks can loosely be defined as subsets of nodes which are more
densely linked, when compared to the rest of the network. Such communities
have been observed, using some of the methods we shall go on to describe,
in many different contexts, including metabolic networks [8, 9], banking net-
works [10] and most notably social networks [I1]. As a result, the problem
of identification of communities has been the focus of many recent efforts.
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Community detection in large networks is potentially very useful. Nodes
belonging to a tight-knit community are more than likely to have other
properties in common. In the world wide web, community analysis has
uncovered thematic clusters [12), [[3]. In biochemical or neural networks,
communities may be functional groups [I4], and separating the network
into such groups could simplify the functional analysis considerably.

The problem of community detection is particularly tricky and has been
the subject of discussion in various disciplines. A simpler version of this
problem, the graph bi-partitioning problem (GBP) has been the topic of
study in the realm of computer science for decades. Here one looks to sepa-
rate the graph into two densely connected communities of equal size, which
are connected with the minimum number of links. This is an NP complete
problem [I5], however several methods have been proposed to reduce the
complexity of the task [I6], 17, [I8]. In real complex networks we often have
no idea how many communities we wish to discover, but in general it is
more than two. This makes the process all the more costly. What is more,
communities may also be hierarchical, that is communities may be further
divided into sub-communities and so on [19, 20} 21].

In this chapter we would like to present the recent advances made in the
field of community identification in networks in a clear and simple fashion.
To this end, the sections are organised as follows. In the next section we
describe some ways to define communities in a network context. Following
this, we present a method to evaluate the a particular partition of a network.
Then, we go on to describe the various recent methods starting with link
removal methods, going on to agglomerative methods, followed by methods
optimising modularity and finally “other” methods. Some of the methods
presented do not necessarily fit into just one of these classification, and there
may be some overlap. In the final section, we compare the methods from a
computational cost perspective and show how sensitive some of the methods
are when applied to ad hoc networks with community structure.

2 Definitions of communities

Despite the large amount of study in this area, a consensus on what is the
definition of community has not been reached. With a few exceptions, we
will mostly be dealing with networks in which the links have no direction
and are unweighted. In this case the definition of community must be purely
topological.

Social networks has been the subject of interest for sociologists for decades.



For a standard text on the social science approach to networks analysis see
[22]. The social science approach is largely (though by no means exclu-
sively) concerned with the effect an individual player has on the network
and vice versa. As a result, the local properties of networks take a more
prominent role in social science research. Nonetheless, much of this knowl-
edge is extremely useful. Some definitions taken from [22] have been used
and developed by methods we shall describe later. Here we present some of
these.

Conceptually, the definitions can be separated into two main categories,
self-referring and comparative definitions. Central to all such definitions is
the concept of subgraph.

1. Self referring definitions

The basic community definition is a clique, defined as a subgroup
of a graph containing more than two nodes where all the nodes are
connected to each other by means of links in both directions. In other
words, this is a fully connected subgraph. This is a particularly strong
definition and rarely fulfilled in real sparse networks for larger groups.
n-cliques, n-clans and n-clubs are similar definitions designed to relax
the above constraint, while retaining its basic premise. The shortest
path between all the nodes in a clique is unity. Allowing this distance
to take higher values, one arrives at the definition of n-cliques, which
are defined as a subgroups of the graph containing more than two
nodes where the largest shortest path distance between any two nodes
in the group is n. n-clans and n-clubs are subtle variations of n-cliques.

2. Comparative definitions

Above, a community has been defined only in reference to itself. A
somewhat different approach to this is to compare the number of in-
ternal links to the number of external links, coming from the intuitive
notion that a community will be denser in terms of links than its sur-
roundings. One such definition, an LS set is defined as a set of nodes
in which each of its components has more links to other components
within the same community. This is the same definition as the strong
definition of community in [23].

Again the above definition is quite restrictive, and in order to relax
the constraints even further, Raddichi et al. propose to use the sum
of links. So a community in the weak sense is defined as a set of nodes
whose total number of internal links is greater than the total number



of links to the outside. This is the most intuitive of all definitions and
is the one that is used most, although implicitly.

Self-referring definitions, while useful in characterising communities which
are already known, are not the best choice while trying to find them. The
Bron-Kerbosch algorithm [24] for finding cliques in a network is very costly,
running in worst case time that scales exponentially with network size. Com-
parative definitions, on the other hand, lend themselves much more easily to
the search for communities in large complex networks. In a way, comparing
the internal structure of a community to the external structure gives rise to
a measure of how good a particular partition is, as described in the next
section.

3 Evaluating community identification

A question that has been raised in recent years is how to evaluate a given
partition of a network into communities. A simple approach that has become
widely accepted was proposed in [25]. It is based on the intuitive idea that
random networks do not exhibit community structure. Let us imagine that
we have an arbitrary network, and an arbitrary partition of that network
into N, communities. It is then possible to define a N, x N, size matrix e
where the elements e;; represent the fraction of total links starting at a node
in partition 7 and ending at a node in partition j. Then, the sum of the
any row (or column) of e, a; = >, e;; corresponds to the fraction of links
connected to i.

If the network does not exhibit community structure, or if the partitions
are allocated without any regard to the underlying structure, the expected
value of the fraction of links within partitions can be estimated. It is simply
the probability that a link begins at a node in i, a;, multiplied by the
fraction of links that end at a node in i, a;. So the expected number of
intra-community links is just a;a;. On the other hand we know that the real
fraction of links exclusively within a partition is e;;. So, we can compare the
two directly and sum over all the partitions in the graph.

Q= Z(en' - a;) (1)

This is a measure known as modularity. Let us consider as an example
a network comprised of two disconnected components. If we then have two
partitions, corresponding exactly to the two components, modularity will
have a value of 1. For particularly “bad” partitions, for example, when all



the nodes are in a community of their own, the value of modularity can take
negative values.

One might be tempted to think that random networks will exhibit very
small values of modularity. As Guimera et al. show, this in general is not the
case [26]. It is possible to find a partition which not only has a nonzero value
of modularity for random networks of finite size, but that this value is quite
high, for example a network of 128 nodes and 1024 links has a maximum
modularity of 0.208. This suggests that these networks that seem to have
no structure actually exhibit community structure due to fluctuations.

From here on we will look at different methods of community identifica-
tion presented recently. First we consider methods based on link removal.

4 Link removal methods

Intuitively, the simplest way to partition a network is to cut some links until
the network is no longer connected. Divisive methods do just that. How-
ever, cutting links haphazardly is unlikely to give useful results. So, several
methods have been proposed to find the most appropriate links to remove, so
that the disconnected components correspond to meaningful communities.

4.1 Shortest path centrality

This is one of the first methods presented, and remains one of the more
elegant [I1]. It is based on the idea of centrality, a measure of how central
the node or link is in the network. Shortest path centrality is employed in
this case, and is measured as the number of shortest paths between pairs of
nodes that pass through a certain node or link. Intuitively, links which are
most central are also the most “between”, and as such, will act as bridges
joining communities together in a connected whole. Removing these bridges
should split the network into more densely connected communities, see Fig.

m

The algorithm proceeds as follows:

1. Calculate shortest path centralities for all links.
2. Remove link with the highest centrality.
3. Recalculate all link centralities.

4. Repeat from step 2 until the network is split into two parts.



Figure 1: Shortest path centrality (betweenness) is the number of shortest
paths that go through a link or node. In this simple case, the link with the
largest link centrality is that joining nodes 4 and 5.

5. Proceed iteratively within each of the partitions until no links remain
and the network is reduced to individual nodes, each in its own parti-
tion.

Should a particular link removal split the network, it necessarily does
so into two components, since a link by definition connects two nodes. As
the algorithm proceeds separating the network into ever smaller pieces, it is
possible to construct a a dendrogram or binary tree to store the information
of the entire process for later retrieval and analysis.

Calculation of link betweenness is the most computer intensive part of
the algorithm. Using the fastest methods developed independently by New-
man [27] and Brandes [28] and for a network of size n with m links the speed
of calculating all link betweenness-es still remains of O(mn) for unweighted
networks. Unfortunately, the calculation needs to be repeated each time
since once any link is removed, the betweenness of all the other links is af-
fected. In fact Girvan and Newman report that omitting step 3 leads to
“wrong” community detection [I1].

This algorithm is quite sensitive and is one of the few able to detect
community structure at all levels. Its major drawback is the computational
cost. It scales with the number of nodes n and number of links m as O(m?n),
which limits the size of the graph one can treat with this method to around
10000 nodes (with current desktop computer technology and some patience).

4.2 Current-flow and random walk centrality

In an extension of the method described above, in [25] the same authors
present two other means to detect community structure. The basic method
remains the same as above, with the difference being the way in which the
link centrality is calculated.
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Figure 2: Resistor networks and current flow centrality. The links in the
network are considered as unit resistances. By choosing a pair of nodes to
be a source of unit voltage s and sink ¢, one can can calculate the current
flow through any link using Kirchoff’s laws. Summing this value for every
pair of nodes gives the total current flow betweenness of a link. In this case
the biggest current flow is through link joining nodes 4 and 5.

1. Resistor networks. In this approach the network to be studied is con-
sidered to be a circuit, where links are assigned a unit resistance and
a particular pair of nodes act as unit voltage source and sink. The
current flows from source to sink along a number of paths, those with
the lowest resistance (shortest path) carry the most current. So the
current-flow betweenness of an link can be calculated using Kirchoff’s
laws by summing the value of the current flowing through that link
over all pairs of nodes. This can be done in only in O(n?*) time for
sparse networks since the method is dependent on the inversion of an
N x N matrix which takes O(n?) time in the worst case.

2. Random walks. Here, the network is thought of as a substrate for sig-
nals that perform a random walk from a source vertex to a sink vertex.
The link betweenness in this case is simply the rate of flow of random
walkers through a particular link summed over all pairs of vertices.
The authors of [25] show that this measure of betweenness is numeri-
cally identical to current flow betweenness, although the derivation is
different.

Although conceptually interesting, these approaches are computationally
costly. As the authors themselves note, and we can see in Sec. [@, the shortest
path betweenness outperforms these approaches in both speed and accuracy.
Both the resistor network approach and the random walk approach ideas
have been developed further by other authors (see Sec. and Sec. [Z4)).



4.3 Information centrality

Another divisive algorithm was presented by Fortunato et al. [29]. In this
paper they employ the network efficiency measure, previously proposed by
Latora and Marchiori [30] to quantify how efficient a particular network G
is in the context of information exchange. Once a particular link is removed
from G, its efficiency is reduced by a measurable amount C, or information
centrality. The idea behind the algorithm is that the links responsible for
the largest drop in network efficiency are those that act as bridges between
communities. The algorithm proceeds in a similar way as the GN algorithm,
that is, recursively calculating the links with highest C! and removing them,
until the entire hierarchy is unravelled. The algorithm is somewhat slower
than other divisive algorithms running at (O(n*)), but what it loses in speed
it gains in accuracy. In comparison with the GN algorithm it performs better
when the communities to be found are more diffuse, see Sec. @

4.4 Link clustering

This algorithm, proposed in [23] is based on the idea that linked nodes
belonging to the same community should have a larger number of ’'common
friends’. In other words links inside communities should be part of a large
proportion of possible loops, and links pointing to outside of the community
should be included in few or no loops. The algorithm proceeds as in E], but
instead of using the link centrality value, it works with the ’link-clustering
coefficient” C'9), which represents the fraction of possible loops of order g
that pass through a certain link. The algorithm is implemented for triangles
(g = 3) or squares (g = 4). The system computes the C'(9) values for all links,
and cuts the one with the minimum value. These two steps are repeated
recursively as long as all the partitions fulfil one of the community definitions
(see Sec. @).

The algorithm is very fast, since calculating the clustering coefficient
can be done with local information only. It is also interesting because it was
the first algorithm which contained a definition of community to stop the
analysis when a certain condition is fulfilled. This method is not appropriate
for trees, sparse graphs and disassortative networks due to the small number
of triangles and squares.



5 Agglomerative methods

Instead of starting with the network as a whole and looking for a way to
split it into meaningful communities, one can look at the problem from a
different perspective. One can start with all the nodes in the network being
separate, and use some method to join up, or agglomerate, nodes which are
likely to be in the same community.

5.1 Hierarchical clustering

Traditional methods for detecting communities in social networks have been
based on “hierarchical clustering” (see for example [31] and [32]). In general
they proceed by calculating a similarity metric for each pair of vertices,
representing how close the vertices are according to some property of the
network. In the beginning, only vertices in the network are considered, with
no links between them, and links are added one by one in order of their
weights. Such methods have previously been very successful in small scale
case studies, particularly when the complexity of the network under study
is not great. Recently however, since this method is very fast and scales
well with system size, it has been employed to study the temporal evolution
of communities in large networks [33]. Hopcroft et al. study the CiteSeer
citation network, where papers in the CiteSeer database are considered as
nodes, and citations are considered as links. As a weight metric they use a
measure based on the number of citations which any two papers share. The
sheer size of this network (around 250,000 papers) makes it intractable with
most other methods, and demonstrates the ability of hierarchical clustering
methods to deal with large data sets.

5.2 L-shell method

This method proposes a different take on agglomerative methods. The al-
gorithm proposed in [34] consists of a shell of size [, starting at a node i
is a subset of nodes, all within a shortest path distance of d < [ (L-shell)
spreading outward from a starting node ¢ . As the shell expands the total
emerging degree, Kf, is measured which is simply the number of links point-
ing to vertices outside the expanding shell. When the ratio of the emerging

degree at step [ to that at step [ — ¢ is lower than a cut-off value,

9 Til7
the algorithm is stopped. Those nodes within a distance [ of the starting
vertex are grouped within one community, and all other nodes are said to be

outside. This part of the algorithm may be applied when one is concerned



with a single community and not the entire community structure, and for
this purpose the algorithm is computationally inexpensive scaling linearly
with the size of the community under scrutiny. To make the method more
general the authors also propose one possible method to apply the algorithm
globally. The above process for each node in the network is repeated and
a membership matriz M is built with the information extracted in the fol-
lowing way: if the process starting at node ¢ classes node j as being in the
same community, the element m;; is given the value of 1. Otherwise it is set
to 0L,

6 Methods based on maximising modularity

As described in Sec. Bl the modularity measure is one way to evaluate quan-
titatively a network partition. So, as many authors have asked themselves,
why not optimise this value directly? The main problem is that the parti-
tion space of any graph (even relatively small ones) is huge, and one needs
a guide to navigate this space and find maximum values. Here we outline
the approaches that have tackled this problem.

6.1 Greedy algorithm

In the first attempt at optimising () directly Newman takes a greedy opti-
misation (hill climbing) approach [35]. At the start of the algorithm, each
node is placed into its own partition. One can then calculate the change in
() should any two partitions be joined. The algorithm proceeds by choosing
the pair of partitions producing the largest change, and joining them. This
process is repeated until a maximum value of () is obtained.

The algorithm is one of the fastest available, especially when applied us-
ing the data structure for sparse networks described in [36]. However, while
also pretty good at identifying community structure, more recent approaches
have achieved even more accuracy (see Sec. @).

This method has been used to study the size distributions of communi-
ties. Due to the speed of the approach, large networks can be decomposed
into meaningful communities and the distribution of the sizes can be plot-
ted with enough statistics to be able to make conclusions. It has previously
been noted that the distribution of community sizes seems to follow a power

!The membership matrix is not necessarily symmetric: an L-shell starting at node ¢
may class node j as being in the same community, but this does not imply that an L-shell
starting at j will class ¢ as being in the same community.
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law [19, 20, 2T]. However there seems to be some discussion about the ex-
ponent of these power laws. The author of [7] shows that for a part of the
collaboration network presented in [27], the size distribution follows a power
law with exponent —2. However, repeating this experiment we recover an
exponent of around —1.5. The explanation of these exponents still remains
an open problem.
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Figure 3: The size distribution of community sizes in the ArXiv collabora-
tion network. The cumulative distribution follows a power law over several
decades with exponent —0.5. The non-cumulative distribution, although
noisier seems to follow a power law with exponent with around —1.5 as
expected.

6.2 Simulated annealing methods

Another approach to optimise the modularity measure () is to employ sim-
ulated annealing methods. In [37] the authors present two modifications of
the Monte Carlo sampling method with simulated annealing. The process
begins with any initial partition of the nodes into communities. At each
step, a node is chosen at random and moved to a different community, also
chosen at random. If the change improves the modularity it is always ac-
cepted, otherwise it is accepted with a probability exp(3AQ)?. The authors
try to improve the success of in two ways. Firstly, the algorithm is stopped
periodically, or quenched, and AQ is calculated for moving each node to ev-

2This is the Metropolis criterion.
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ery community that is not its own. Finally, the move corresponding to the
largest value of AQ) is accepted. The second way to improve the efficiency
is using a Basin-Hopping approach, where in each step a series of nodes
is moved from one community to another, not just one. In this case, the
acceptance criterion is calculated directly from the partition that results at
the end of the move. The authors report that the second method is slower
to run, but able to find high values of @) quickly. In case of large networks
it requires less computer memory than the other presented, since it doesn’t
need extra data structures.

6.3 Extremal optimisation

In this approach [38], an heuristic search procedure based on extremal op-
timisation [39] is used to find the network community configuration that
has the best modularity value. The algorithm optimises the local modular-
ity, a measure which represents the contribution of each node to the global
modularity. To begin with, nodes are assigned one of two partitions at
random. As it evolves, the algorithm improves the contribution of nodes
with the worst local modularity, by moving them to the other partition, and
therefore improving the global modularity until a maximum possible value
is found. Then the links between the two partitions are removed, and the
process is repeated recursively while the modularity keeps increasing.
Extra information is not needed to detect the optimal number of com-
munities and the process stops when the partition modularity cannot be
improved further. While not the fastest algorithm, scaling as O(n?log(n))
(a good application of the greedy algorithm scaling with O(nlog?(n)), it
achieves the highest known modularity values for all networks studied, see

Sec. @

7 Spectral analysis methods

The adjacency matrix of a network contains all the information about the
networks topology. A graph of size N can be represented by a matrix A
of size N x N whose element A; ; is zero if no link exists between nodes i
and j, and greater than zero if a link exists, where the value of the non-zero
element represents the weight of the link.

An alternative representation of an unweighted graph in matrix form is
the Laplacian matrix®. If a link exists between nodes i and j, the element

3The name Laplacian is drawn from the fact that applying the discrete Laplacian

12



L; ; = —1. The diagonal of the matrix L;; contains the degree of node 7, so
that the sum of each row and column is equal to zero. Methods which take
advantage of algebraic properties of these matrices have been proposed over
several decades.

7.1 Spectral bisection

Since the sum of elements over each row or column of the Laplacian ma-
trix is equal to zero, there necessarily exists an eigenvector with eigenvalue
0. If the network to be analysed is connected there is only one zero eigen-
value. However, for disconnected graphs with m separate components, the
Laplacian matrix is block diagonal, and has m degenerate eigenvectors all
corresponding to eigenvalue 0. If the division is not so clear, that is, there
exist some links between the m components, the degeneration is no longer
present, leaving one eigenvector with eigenvalue zero and m — 1 eigenvector
with eigenvalue slightly greater from zero [{]. So it should be possible to
find the blocks, at least approximately by considering the eigenvalues slightly
greater than zero and looking at the components of their eigenvectors. As
the Laplacian matrix is symmetric, with orthogonal eigenvectors, the sums
of the components of each eigenvector must vanish (apart from the first,
trivial eigenvector, which has all equal components). The problem studied
in classic papers [I7, 4] is a special case, where m = 2, the graph bisection
problem. Here, the second eigenvector can provide a simple way to cut the
graph in two. The components of the second eigenvector corresponding to
nodes in one subgraph will be positive, and so must be negative for those
components corresponding to the other.

Many improvements in both the time it takes for the algorithm to run as
well as its precision have been described since. For a review of such methods,
specifically for scientific computing see [42].

7.2 Multi dimensional spectral analysis

Taking further advantage of the properties of the Laplacian matrix, Donetti
and Munioz present a very nice approach in [43]. The first few non-trivial
eigenvectors can be extracted sequentially at minimum cost, using the Lanc-
zos method, which can be applied to sparse matrices at minimum compu-
tational cost [44]. The individual eigenvector components, which represent
nodes in the graph, can be thought of as coordinates in M-dimensional
space, where M is the number of non-trivial eigenvectors considered. The

operator on the network in question gives the Laplacian matrix.

13



idea is that if two nodes belong to the same community, they are close in this
M-space. As the authors point out, there is more than one way to measure
these distances.
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Figure 4: (a) Components of the first non-trivial eigenvector for a ad hoc
network with 4 communities (see Sec. @). (b) All communities can be clearly
identified when the components of more than one eigenvector are used as
coordinates in M-dimensional space where M is the number of eigenvectors
used. Here M = 2.

Once separated in this space, the nodes can be clustered using hierar-
chical agglomerative methods, using both simple Euclidean distance and
angular distance. The authors go on to show that the angular version in
general performs much better. Once again, the authors employ different
methods, both “single linkage” or “multiple linkage” clustering. They show
that while faster, single linkage clustering performs worse than the multiple
linkage version. The clustering is stopped at the highest value of modularity
obtained (see Sec. B), thus detecting the optimal configuration.

This algorithm is reasonably fast (O(N?3)according to the authors), but
needs a priori information on how many vectors need to be extracted to
separate the communities properly. In terms of sensitivity, the algorithm
performs well (see Sec. @). In the comparison section, we use the aliases
DMCS and DMCA for Single Angular and Complete Angular analyses re-
spectively.
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7.3 Constrained optimisation

This method, described in [45] is based on the spectral properties of the
simple adjacency matrix as opposed to the Laplacian. The authors recast
the costly problem of extracting eigenvectors of an N x N matrix into a
constrained optimisation problem. In this way they are able to extract the
eigenvectors much faster. As in the method of [43] this gives information
about the location of the different nodes ordered in different groups in an
M-space (where M is once again, the number of eigenvectors extracted). To
detect the groups that appear, they use a correlation of the average values of
the eigenvectors to measure how close two nodes are in this space. Instead
of providing a clear cut community structure, this method gives us an idea
of how close any pair of nodes is in the context of communities.

To test the method they study both undirected and directed networks,
using the appropriate optimisation function for each case, and test the al-
gorithm on the word association network reported in [46]. The network has
over 10000 nodes and the method is able to give qualitatively good results.

7.4 Approximate resistance networks

In a development of the resistor network approach in [25] Wu et al. present
an approximate method, in order to reduce the computational time needed
[7). In this method, a pair of nodes is chosen at random to be a voltage
source, V1 = 1 and a sinks V5, = 0. The authors then approximate the volt-
age of all other nodes in the network iteratively, avoiding the costly matrix
inversion used in [25]. The accuracy of this approximation is dependent on
how many times the iterative step is repeated. After obtaining the node
voltages in this way, the values are ordered and large gaps in voltage values
are identified. The graph is then split at a particular voltage gap, separat-
ing a number of nodes (within a tolerance limit), which must be previously
known, from the rest of the network. This process is repeated, randomly
choosing pairs of nodes to be voltage sources and sinks. Nodes are then bun-
dled together into a community of the expected size using a simple majority
rule over the realisations of the algorithm. Once one community is identi-
fied, the process can be restricted to choosing nodes from that community
as voltage sources, and sinks from the rest of the network, improving the
accuracy.

This method when employed to identify all communities in a graph is
dependent on having a good idea of the sizes of communities one is looking
for. In networks of larger size and complexity, this is generally not known,
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and the algorithm becomes more difficult to apply. However, the method
can be employed to identify the community that any one nodes belongs to
in linear time, similar to the approach of Bagrow and Bolt [34], see above.

8 Other methods

This section is dedicated to those methods that do not belong clearly to any
of the previous classes.

8.1 Clustering and curvature

This is one of the first attempts at detecting thematic and functional com-
munities based on clustering [13]. Eckmann and Moses use the concept of
curvature of a node and relate it to clustering. Consider a node ¢; its neigh-
bours will be separated by a geodesic distance of at most 2. If links exist
between neighbours of node 4, this distance is unity. The average distance
between neighbours of any node, therefore, lies between 1 and 2. This value
is directly related to clustering (see [I3]). If one assumes that the distance
from node ¢ to any of its neighbours is unity, and take the distance between
any of the neighbours to be the average, one can indeed think of the node
to be in “curved” space, with the amount of curvature depending on the
average distance between the nodes, see Fig. B

The method is based on the intuition that high curvature region of a
network will belong to the same community. The authors show that find-
ing connected components of high curvature give a good idea of community
structure. In a later effort, they go on to use the method to study commu-
nities in email dialogue [4§].

8.2 Random walk based methods

In a set of papers, Zhou and collaborators develop a methodology for com-
munity detection based on random walks [49, b0, K1]. Apart from a method
for finding communities, Zhou also presents a definition of what a commu-
nity is. Also worthy of note is that the method is applicable to both directed
and undirected networks.

Instead of actually performing the random walk on the network, it is
possible to calculate the average distance from node ¢ to node j algebraically
starting with the adjacency matrix?. From the information contained in the

4Note that although the absolute distance from a node to one of its neighbours is
necessarily 1, this is not generally true for a random walker, which could easily make a
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Figure 5: How clustering is related to curvature according to [I3]. For a
node i, the shortest path distance between any of its neighbours will be
either 1, if the neighbours are linked, or 2, if they are not. The average
distance between the neighbours can give a measure of curvature. Positive
curvature is depicted in (a) and negative curvature is depicted in (b). Both
triangles have sides of length unity, and the angle between the two is the
same, but the distances are different, d < d'.

average distances local and global attractors of each node can be defined.
The local attractor of node i is the closest node (smallest average distance)
of its nearest neighbours, and the global attractor, the node closest to all
other nodes in the network. From these two definitions, two different formal
definitions of community are derived. A local community is defined as a
subset of the network in question whose nodes satisfy the following three
conditions:

e if node 7 belongs to the community, then its local attractor j also
belongs to the same community.

e if node 7 is the local attractor of any other node k, k also belongs to
the same community.

e any subset of the community in question is not a local community in
its own right, ie. it is the smallest possible set.

The “global community” is defined in much the same way, although in
this case local communities can form part of global communities.

“mistake” and go where it is not supposed to.
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Apart from the definition of community this method permits a formal
definition of a central node for a community. So, that node which is its own
global attractor is the central node.

In a more refined effort, the author uses the average distance measure to
define a dissimilarity indez of any two nodes® [50]. Using the dissimilarity in-
dex, the author describes an elaborate method of hierarchical agglomeration
of nodes into communities.

Most recently Zhou and Lipowsky [21, [[4] present another method based
on biased random walks. Instead of having the walkers performing purely
random walks, the walker has a higher probability to jump from a node ¢
to a node which shares the highest number of neighbours with i (essentially
biasing the random walker to go down the link with the highest link cluster-
ing). This time Zhou presents an algorithm to detect communities similar
to hierarchical clustering algorithms described

In a similar approach Latapy and Pons [52] also employ the intuitive idea
that a random walker will get trapped for a longer time in a a densely con-
nected community. They calculate a distance measure between two nodes,
and apply an agglomerative method [53], starting with all nodes in their
own community, and joining them two by two. The main difference between
this approach and the above is that at each step, the distances are recal-
culated. The two methods have very similar sensitivities, suggesting that
recalculating the distances in each step is not crucial, see Sec. @

8.3 Q-potts model

Another interesting approach [b4] detects communities by mapping it to
a spin system [b5]. Here, each node is assigned a spin state between 1
and ¢, at random. The energy of the spin system is determined using a
g-Potts Hamiltonian © The idea is that in the ground state of the system,
communities are identified as groups with equal spin values, see Fig. B To
get to the ground state (or at least close to it) the system is allowed to
evolve using a simple Monte-Carlo method with simulated annealing. At
each step, the spin of a node selected at random is updated according to the
Metropolis criterion depending on the change in the energy of the system.
Every few steps, the Monte-Carlo “temperature” is reduced. The method
has two parameters, ¢ and . The value of ¢ needs to be large enough to

5For nodes ¢ and j the dissimilarity index is simply the square of the difference between
the distance from another node k to ¢ and the distance from k to j summed over all nodes
k.

5The g-Potts model is essentially an Ising model with ¢ states instead of just two.
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identify all the possible communities and v is set to be the average link
probability of the network. Appropriate values are discussed further in the

paper.

Figure 6: The g-Potts model as applied to a small network with communi-
ties. Each node is assigned one of ¢ spins. As the Hamiltonian of the system
is minimised, the spins in a tightly connected community take equal values,
which are different to those of spins in other communities.

One useful characteristic of this is that it permits the detection of com-
munities which are “fuzzy”, or clearly separate from the rest of the network.
The method should be fast since one only needs only local information to
calculate the Hamiltonian and update the spins. The sensitivity of the al-
gorithm is also good, as we can see in the next section.

9 Comparative evaluation

In order for the reader to be able to compare the algorithms, both in terms of
their speed and sensitivity, we would like to present a qualitative comparison
for all the above community identification methods. This unfortunately is
not possible for all the methods described, as they are very varied, both
conceptually and in their applications.

For some of these methods we are able to estimate how the computational
cost scales with network size n. Table [l shows these values.

One method that has been employed in many cases is to see how the
method performs when applied to ad hoc networks with well known, fixed
community structure [25].

The networks are generated with n = 128 nodes, split into four commu-
nities containing 32 nodes each. A pair of nodes both of which belong to the
same community are linked with probability p;,, and a pair which belong to
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Reference Alias Order

[25] NG O(m?n)
[TT GN O(n*m)

]
[29] FLM O(n%)

] RCCLP | O(n?)

] NF O(nlog?n)
&3], DMSA O(n3)
73], DMCA O(n3)

[13] EM O(m(k?))
[14] ZL O(n3)
4] RB unknown
[34] BB O(n?)
[35] DA | O(n?logn)
2] CSCcC O(n?)
[ WH O(n +m)

Table 1: Table summarising how different approaches scale with number of
nodes n and number of links m and k is the degree of any node. The alias
show here is used in Figures [ and B

different communities are joined with probability py.:. The value of pyy: is
chosen so that the average number of links a node has to members of other
community, 2.y is controlled. The value of p;, is chosen to keep the total
average node degree, z;,; constant. As z,,: is increased from zero, the com-
munities become more and more diffuse and harder to identify. Since the
“real” community structure is well known in this case, it is possible to mea-
sure the number of nodes correctly classified by the method of community
identification. The benchmark test, then, is to plot the fraction of correctly
identified nodes as a function of z,,;.

In Figure [ we show the sensitivity of all methods we have been able
to get gather. To summarise the large amount of information, in Figure
we plot the the fraction of correctly identified nodes for only three values
of zout (6, 7 and 8), for each method. From this we can see that most of
the methods perform very well for z,,; = 6 and even for z,,; = 7 most can
identify more than half the nodes correctly. For z,,; = 8 there remain three
methods able to identify more than half of the nodes correctly”.

"It is important to note that there may be some differences in the way the authors
calculated these values.
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Figure 7: Comparing algorithm sensitivity using ad hoc networks with pre-
determined community structure with n = 128, the network divided into
four communities with 32 nodes each and total average degree of 16. The
z-axis is the average number of connections to outside communities z,,; and
the y-axis is the fraction of nodes correctly identified by the method.

10 Conclusion

In this work we have attempted to give an overview of the modern ap-
proaches to community identification in complex networks. A large amount
of knowledge has been collected in the field, and real progress has been
made, both in the identification of communities and their characterisation.
Some questions do remain open, and it is these that we would suggest for
further study. Despite these efforts, computational cost involved in com-
puting communities in complex network remain significant. At present, the
fastest method for finding an unknown number of communities of unknown
sizes has a cost which scales as O(nlog®n) with network size. While this
makes the analysis of extremely large networks feasible this algorithm does
not guarantee that the partition found will be the best possible one. Other
algorithms which give better partitions are more expensive. The challenge,
then, is to come up with a method which is both fast and accurate.
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Fraction of nodes correctly identified

Figure 8: The fraction of correctly identified nodes at three specific values
of zout, 6, 7 and 8 for all available methods. Here we can see that most of
the methods are very good at finding the “correct” community structure for
values of z,u: up to 6. At 2z, = 7 some methods begin to falter but most
still identify more than half of the nodes correctly. At z,,; = 8, only three
methods are still able to identify the correct structure.
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Another major challenge is to understand the mechanisms which are
responsible for the characteristic scale free distributions of community sizes
observed. Such distributions often suggest an underlying optimisation is
responsible, but this remains to be shown.
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